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QUANTUM-MECHANICAL HAMILTONIAN
OF THE NUCLEAR-LIKE STATES
IN THE SU(2)-SKYRME MODEL

V.A.Nikolaev, O.G.Tkachev

Quantum mechanical Hamiltonian for the nuclear-like states in the
SU(2)-Skyrme model has been obtained in the framework of the collecti-
ve coordinate method. The results of the calculation of the rotational
bands are also presented with and without taking into account vibra-
tional degrees of freedom.

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR.

KBanToBOo-MexaHH4YeC KU raMHUIIbTOHHAH
ANEPHONOAOOHBIX COCTOAHUM
B SU(2)-mozgenu Cxupma
B.A.Hukomnaes, O.I''Tkaues

B paMKkax MeTofia KOJIIEKTHBHBIX KOODIHMHAT TOJIyYeH KBaHTOBO-
MeXaHHYECKHil raMIIbTOHMAH AAEpHONONo6HbIX coctofguuit SU(2)-Mo-
pemu Cxupma. IlpencTannieHbl pe3y/nbTaThl pacieTa POTAHOHHBIX MOIOC

¢ y4eToM M Ge3 yueTa BUGpDalIHOHHBIX CTenieHeH cBOBObI.
PaGota BrimonHeHa B JlaGopaTopuu Teopertnueckoit pusnku OUAN.

In [1] non-toroidal skyrmions up to baryon number B < 12
have been investigated at classical level. A generalized ansatz for

the variational form of the chiral field U:

U(F) = cosF(r) + (7 N) sinF(r) , (1)
has been used. Isotopic vector N determines the considered con-
figurations:

8inT (0) cos® (9 ,9)
N = { 5inT(68) sin2(8 ,¢) } , | (2)
cosT (8)
where $(8,¢), T(8) are some arbitrary functions of angles (0, ¢) of
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the vector " in the spherical coordinate system. With such form
of the chiral field a number of solitons with non - toroidal baryon
charge density distribution has . been obtained. Their masses are
depending linearly on the baryon charge and are smaller than the
masses of the toroidal solitons with the same charge. For example,
a classical soliton composed from two toroidal dibaryons has a mass
?maller»than the mass of one toroidal soliton with baryon charge
our.

We point out in (1] that among the quantum states of the
toroidal skyrmions there are none with quantum numbers of the
triton ground state. Although the quantum state that corresponds
to a nontoroidal configuration has a chance to obtain "right” quan-
tum numbers and to E?a(r:ome bounded after quantization.

In the present paper we calculate the quantum mechanical
Hamiltonian for a class of nuclears like states. We try to show
that the very restrict connection between the third components of
the spin and isospin in body fixed system may be removed for the
considered space of states.

Let us use the collective coordinate method for the class of the
solutions described in [1). We will consider only field configurations
with symmetrical baryon charge density distributions relative to
the (z,y) plane. More formally it means, that we consider only

solutions (n,l ,{k}'l) which obey the conditions:

ki=kiyy-;, = 1,...'—;3- , for oddl, (3)
ki=-kip1-i, 1= 1,..,;—- , for even l.

These symmetrical solutions include almost all configurations we
are interested in. Namely for these configurations the classical
masses are linearly depending on the baryon charge.

We have to make some remarks about the scale variable ) for the
breathing mode. Generally one may introduce a number of \'s: one
for each region of space, labeled by the angles ¢*. But in such case
we will have to take into account the center of mass motion when
we introduce rotations. For simplicity and as a first approximation
let us introduce only one scaling parameter X. The way one can
mtroduce the vibrational and rotational coordinates is well known
(2], [3], [4], [5]- These coordinates transform the stationary solution

Un(@) = o(2) +i (7- §(2)) (4)
by the following way:
Us(2) = U(2,8) = o(&) + ir'Igi (&) , ()

where :
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z'(t) = ¥ (Rf‘) T - B ()]

Here I(t) and R(t) are global orthogonal. 3 X 3 -matrices. Matrix
I describes the isorotations, and R - the s%‘ace rotations. Their
parameters serve as collective coordinates. The frequences of the

isotopic w* and space {1} rotations are ordinarily introduced as
.. kj .. ..
Ini (I—l) = Eubwb ,5‘ = Ihw,) ,
' (R-l)u Ry; = —e,'jjﬂy, . (7

The part of the Lagrangian depending on the rotational coordinates
now 1s

i i
L= Y L= |07 (91 +93) +

m=1 m=1
+ QF (v1+33) + Q™ (7} - 2ka@afls + k,’,n:)] . (8)

In this expression the inertial momenta are of the form:

) [ . 4
Qr()) = ﬁ% / £3ds f ._inodo{-e-*""F x
™ o )

z?
»-1
. 3 -3\
X (k’%—coa’T + (T')’) + sin’F [6—4— +e? ((I"")2 +
. ap O
+ [k’ 2:.:20 +(T')? %)] (1 + cos’T)} , (9)
(- Om Y |
x . —yun*F
QT = o /z’dz / amOdO{—e A X
0 fm-1
-4 -3
X [k‘%—:%%-coaw + (T')‘] + sin’F[e-T +e? ((F')2 +
,9in?T na] sin?F ,8in?T N3
+ [k T (T') ] ——32. k ~inig < 0+ (T')) ¢(10)
oo 0 . T
-yy L 2% . f . __asint'F sin'T
Q™(A) = F.e‘ojx dz' sm0d0{ e —; k —n3g + (11)
m-1
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sin’F [?+ e ((F')’ [k""" 7 (T')’] sin’F )] ain’T} .

Formulas (8-11) are obtamed only for k¥ # 1 case. The impulses
conjugated to the variables @*, 2, are

Si‘.l = ng(’\)niafori=1;2 )

m=1

Sk = 2‘: knQ@™(A) {kafls - 3°} , (12)

m=]

i

TH = Y QRO , fori=1,2 ;

m=1

1
2 Q"M@ - kafls} . (13)

m=]1

It is not difficult to obtain the effective mass for the scaling vibra-
tions:
_ 2 Yy Jfe  _ sin?F
m() = Fa /(F) {—2 +e I

/ [k’"" T, (T')’] am0d0} dz . (14)

-~

in3l
In such way we obtam a Hamiltonian of the form
p? P2 5

w0t 2g,) Tagem Ty (9)

H=M(\)+
where |
M) =¥ e, @)=Y Kez0). ()

mz=1 m=l

The depending on the internal quantum variables part H; of the
Hamiltonian is

1 Q: WA
B lee-a@ ar] (f37)+
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11 Qs 1] sy Qo Ab.1. &bt
+2[Q:Q:—Q% QS] (%) anQz—QﬂT' S )
for odd ! and
SRR N N7 YALIE Y R IR N F7IYAL
S )+z[al‘ 3 @ a9

for even l. In the last expressions

. i {
@:(2) = X Q1) , @)=Y @=(%),

m=1 m=1

!
Q(2) = 3 kaQ™(}) . (19)

m=1

It is seen now, that in the general case there is not a connection
between the third spin and isospin components in body fixed system
as it was for pure toroidal solutions. We have to note that such a

coupling holds for the regions (0p_;,804):
S3l = kaQ™ (kufs - @) , T3l = -Q™ (ka5 -T3) . (20)
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Fig.1 The rotational bands for baryon charge B = 12
nuclear - like state.
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In Fig.1 one sees the rotational bands calculated in accordance
with equation (15). We have to note, that the including of the
vibration does not practically change the deflection angles of the

rotational bands. This differs the considered nuclear case from
the dibaryon one [6]. In Fig.1 the solid line corresponds to the
calculations in which the vibrations have been taken into account.
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